JIAPENG TANG

Boltzmannstrasse 3, 85748 Garching bei Munich, Germany $(+49)015783512283 \diamond (+86)13246818872$ tangjiapengtjp@gmail.com \diamond jiapeng.tang@tum.de

EDUCATION

Technical University of Munich

Nov. 2021 - Mar. 2026

Ph.D. of Informatics

South China University of Technology Sep. 2018 - Jun. 2021

Master of Signal and Information Processing

South China University of Technology Sep. 2014 - Jun. 2018

Bachelor of Engineering, Information Engineering GPA: 3.85/4 Ranking: 6/61

RESEARCH INTERESTS

Generative Models: Controllable Video Diffusion Models, Multi-view Image Diffusion, Relighting Diffusion, 3D Shape/Scene Generation, and 4D Motion Generation.

Head Avatar Reconstruction: Animatable NeRF/Gaussian Splatting, Neural Parametric Models, and Head Tracking.

RECENT PROJECTS

Controllable Head Video Diffusion Models.

Generative Object Relighting via Multi-view Diffusion Models.

Gaussian Avatars Reconstruction via Multi-view Head Diffusion.

3D/4D Shape and Scene Generation.

EXPERIENCE

Meta Reality Lab	Jul. 2025 - Nov. 2025
Research Scientist Intern	Burlingame, US
Google Research	Jul. 2024 - Oct. 2024
Research Scientist Intern	San Francisco, US
DAMO Academy, Alibaba Group	Jun. 2020 - Jun. 2021
Research Intern	Shenzhen, China
The Chinese University of Hong Kong, Shenzhen	July. 2018 - Sep. 2018
Visiting Student	Shenzhen, China

PUBLICATIONS

* Joint first author, # Corresponding author, Oral (2), Spotlight (2)

Generative World Models: Video/Multi-view Generation, 3D Object/Head/Scene Generation

• FactorPortrait: Controllable Portrait Animation via Disentangled Expression, Pose, and Viewpoint. In Submission.

Jiapeng Tang, Kai Li, Chengxiang Yin, Liuhao Ge, Fei Jiang, Jiu Xu, Matthias Nießner, Christian Hane, Timur Bagautdinov, Egor Zakharov, Peihong Guo.

TL;DR. Introduced FactorPortrait, a video diffusion method for controllable portrait animation that enables lifelike synthesis from disentangled control signals of facial expressions, head movement, and camera viewpoints.

• Video Diffusion Shader using 3D Face Tracking. In Submission.

Jiapeng Tang*, Wenbo Ji*, Davide Davoli, Zhe Chen, Liam Schoneveld, Matthias Nießner.

TL;DR. Introduced a Video Diffusion Shader to generate vivid and expressive facial animations from a single reference image using 3DMM tracking.

• ROGR: Relightable 3D Objects using Generative Relighting. NeurIPS 2025 Spotlight. Jiapeng Tang*, Matthew Levine*, Dor Verbin, Stephan J. Garbin, Matthias Nießner, Ricardo Martin Brualla, Pratul P. Srinivasan, Philipp Henzler.

TL;DR. Proposed a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations.

• GAF: Gaussian Avatars Reconstruction from Monocular Videos via Multi-view Head Diffusion. CVPR 2025.

Jiapeng Tang, Davide Davoli, Tobias Kirschstein, Liam Schoneveld, Matthias Nießner.

TL;DR. Proposed a novel approach for reconstructing animatable Gaussian avatars from monocular videos captured by commodity devices like smartphones, driven by multi-view head diffusion models.

• DiffuScene: Denoising Diffusion Probabilistic Model for Generative Indoor Scene Synthesis. CVPR 2024.

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, Matthias Nießner.

TL;DR. Present 3D indoor scene diffusion models, enabling many downstream applications, including scene completion, scene arrangement, and text-conditioned scene synthesis.

• Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking. CVPR 2024, supervise master thesis project.

Wei Cao*, Chang Luo*, Biao Zhang, Matthias Nießner, **Jiapeng Tang**#.

TL;DR: Proposed the first 4D latent diffusion models for dynamic surface generation.

• 3DShape2VecSet: A 3D Shape Representation for Neural Fields and Generative Diffusion Models. SIGGRAPH/ToG 2023.

Biao Zhang, Jiapeng Tang, Matthias Niessner, Peter Wonka.

TL;DR: Introduced a novel shape representation 'VecSet' for neural fields designed for generative diffusion models.

• DPHMs: Diffusion Parametric Head Models for Depth-based Tracking. CVPR 2024. Jiapeng Tang, Angela Dai, Yinyu Nie, Lev Markhasin, Justus Thies, Matthias Nießner. TL;DR: Introduced a diffusion parametric head model for robust head reconstruction and expression tracking from monocular depth sequences.

• RGBD2: Generative Scene Synthesis via Incremental View Inpainting using RGBD Diffusion Models. CVPR 2023.

Jiabao Lei, Jiapeng Tang, Kui Jia.

TL;DR: A scene generative model that generates novel RGBD views along a camera trajectory.

• Neural Shape Deformation Priors. NeurIPS 2022 Spotlight.

Jiapeng Tang, Lev Markhasin, Bi Wang, Justus Thies, Matthias Nießner.

TL;DR: Learn transformer-based deformation priors for shape manipulation.

Head Avatar Reconstruction and Animation

• SHeaP: Self-Supervised Head Geometry Predictor Learned via 2D Gaussians. ICCV 2025.

Liam Schoneveld, Zhe Chen, Davide Davoli, **Jiapeng Tang**, Saimon Terazawa, Ko Nishino Matthias Nießner M. Nießner.

TL;DR: Utilize head gaussians as a shader model for face tracking.

• Monocular and Generalizable Gaussian Talking Head Animation. CVPR 2025.

Shengjie Gong, Haojie Li, **Jiapeng Tang**, Dongming Hu, Shuangping Huang, Hao Chen, Tianshui Chen, Zhuoman Liu.

TL;DR: Feed-forward gaussian head reconstruction from single images.

• GGHead: Fast and Generalizable 3D Gaussian Heads. SIGGRAPH ASIA 2024.

Tobias Kirschstein, Simon Giebenhain, **Jiapeng Tang**, Markos Georgopoulos, Matthias Nießner. TL;DR: GAN-based gaussian head generation.

• KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding. ECCV 2024.

Zhihao Xu, Shengjie Gong, **Jiapeng Tang**, Lingyu Liang, Yining Huang, Haojie Li, Shuangping Huang.

TL;DR: Introduced key motion embeddings to decrease cross-modal uncertainty of speech-driven 3D facial animation.

3D Object/Scene Reconstruction from Single Images or Scans.

• PVSeRF: Joint Pixel-, Voxel-and Surface-Aligned Radiance Field for Single-Image Novel View Synthesis. ACM MM 2022.

Xianggang Yu, **Jiapeng Tang**, Yipeng Qin, Chenghong Li, Linchao Bao, Xiaoguang Han, Shuguang Cui.

TL;DR: Introduced voxel and surface-aligned features to alleviate depth ambiguities of single-view NeRF reconstruction.

• SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks. ICCV 2021 Oral, 3.4%.

Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, Lei Zhang.

TL;DR: Proposed sign-agnostic optimization for implicit surface reconstruction from point clouds without normals.

• SkeletonNet: A Topology-Preserving Solution for Learning Mesh Reconstruction of Object Surfaces from RGB Images. TPAMI 2021.

Jiapeng Tang*, Xiaoguang Han*, Mingkui Tan, Xin Tong and Kui Jia.

TL;DR: Proposed skeleton-guided implicit surface reconstruction from single-view images, preserving long and thin structures of implicit surfaces.

• Learning Parallel Dense Correspondence from Spatio-Temporal Descriptors for Efficient and Robust 4D Reconstruction. CVPR 2021.

Jiapeng Tang, Dan Xu, Kui Jia, Lei Zhang.

TL;DR: Introduced a spatial-temporal point cloud encoder and a efficient learning strategy for 4D reconstruction.

• Deep Mesh Reconstruction from Single RGB Images via Topology Modification Networks. ICCV 2019.

Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang and K. Jia.

TL;DR: Proposed topology modification network to reconstruction mesh with genus nonzero.

• A Skeleton-bridged Deep Learning Approach for Generating Meshes of Complex Topolo-

gies from Single RGB Images. CVPR 2019, Oral, Best paper final lists, 0.8%.

Jiapeng Tang*, Xiaoguang Han*, Junyi Pan, Kui Jia and Xin Tong.

TL;DR: A skeleton-bridged, stage-wise learning approach to reconstruct surface meshes with complex topologies. A novel design of parallel streams respectively for synthesis of curve- and surface-like skeleton points. Take the respective advantages of different shape representations including point cloud, volume, and mesh.

AWARDS

Second-class South China University of Technology Scholarship	2015-2017
Merit Student of South China University of Technology	2016-2017
First-class South China University of Technology Postgraduate Scholarship	2018-2019
South China University of Technology Postgraduate Scholarship	2019-2021

SKILLS AND INTERESTS

Language: Native in Chinese (Mandarin), Fluent in English

Programming Language: Python, C++/Cuda, Matlab, LaTeX

Deep Learning Platform: PyTorch, TensorFlow

Sports: Basketball, Badminton, Table tennis, Hiking, and Travelling

OTHERS

For more information, please visit my website at: https://tangjiapeng.github.io.