

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Jiapeng Tang^{1,4} Jiabao Lei¹ Dan Xu² Feiying Ma⁴ Kui Jia¹ Lei Zhang^{3,4}

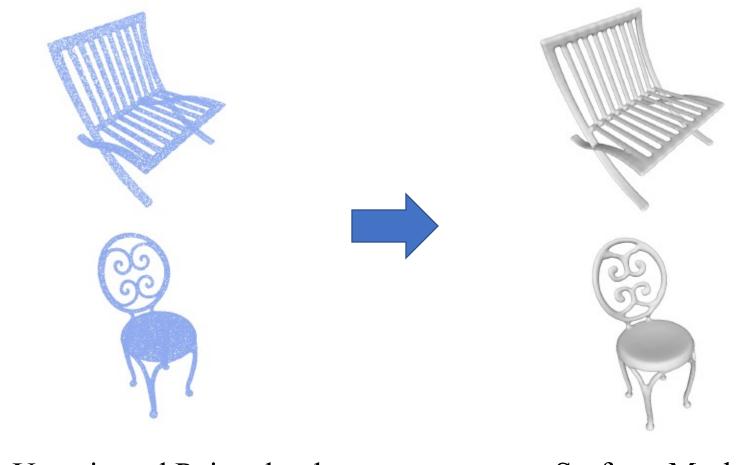
¹ South China University of Technology

² The Hong Kong University of Sciences and Technology

³ The Hong Kong Polytechnic University

⁴ DAMO Academy, Alibaba Group

Task: Surface Reconstruction



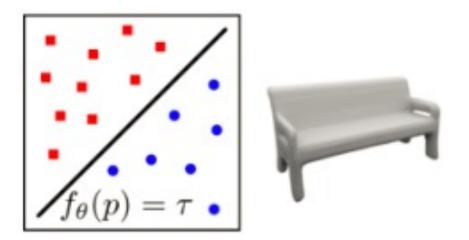
Un-oriented Point clouds

Surface Meshes

Related Works

Neural Implicit Representation

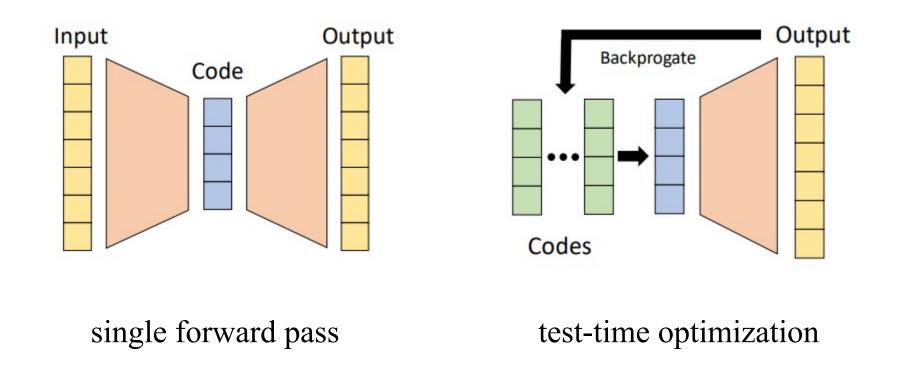
• represent a 3D shape as the continuous decision boundary of a binary classifier.



u surface reconstruction with infinite resolution and arbitrary topology

Mescheder, L., et al. Occupancy networks. CVPR 2019.

Improve the generality to novel shapes



□ Further optimize network parameters during inference to find a better solution

Park, J., et al. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. CVPR2019.

Improve the scalability to large-scale scenes

Part auto-encoder

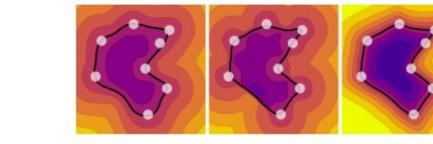
Training object parts

Test: scalable to large scenes

- **Pros:** local shape modeling for 3D scenes
- **Cons:** require accurate oriented normals to enforce global consistency

Jiang, C., et al. Local implicit grid representations for 3d scenes. CVPR2020.

Improve the robustness to real-world scans



initialize the SDF decoder to

represent a signed field

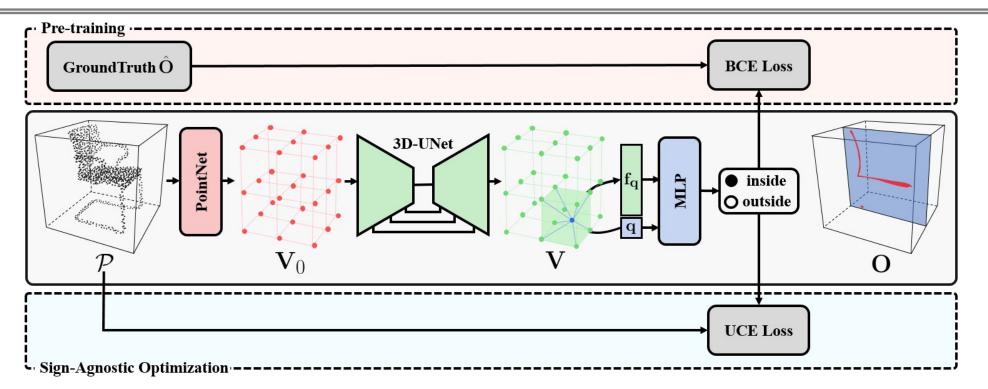
learn SDF by unsigned distance loss

- **Pros:** not require oriented normals
- **Cons:** struggle to recover fine-grained scene surfaces

Atzmon, M., et al. Sal: Sign agnostic learning of shapes from raw data. CVPR2020.

Approach

Sign-Agnostic Optimization of Convolutional Occupancy Networks

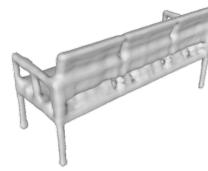


- *Middle: local implicit fields* conditioned on *convolutional features* from a 3D U-Net.
- Top: network pre-training on 3D datasets by binary cross-entropy (BCE) loss.
- Bottom: sign-agnostic, test-time optimization via unsigned cross entropy (UCE) loss.

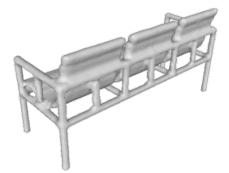
Peng, S., et al. Convolutional occupancy networks. ECCV 2020.

Motivations

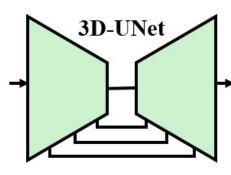
• Characteristic 1: Pre-trained occupancy field prediction networks provide signed fields as initialization for the test-time optimization.



sign-agnostic, test -time optimization



• Characteristic 2: 3D U-Net aggregates both local and global shape features



- □ local shape features: preserve scene surface details.
- global shape priors: enforce global consistency

between local fields.

Unsigned Cross Entropy

 $Q_{\hat{S}}$: a point set obtained from the *observed surface*. $Q_{\hat{S}}$: a point set sampled from *non-surface volume*.

Work Condition Summary

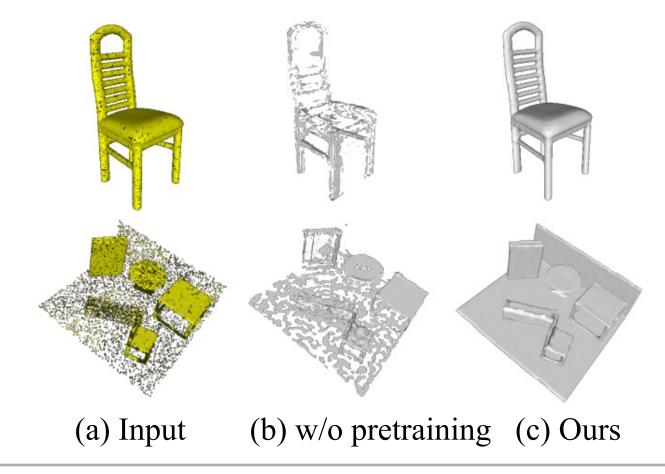
Methods	Without normals	Optimization of network parameters	Local geometry modeling
SPSR [26]	×	\checkmark	\checkmark
ONet [30]	~	×	×
SAL [2]	~	×	×
IGR [16]	~	\checkmark	×
CONet [33]	~	×	\checkmark
LIG [23]	×	\checkmark	\checkmark
Ours	\checkmark	\checkmark	\checkmark

Our method is the first to maximize the three reconstruction objectives in a unified framework: *scale well to large scenes, generalize well to novel shapes, and robust to real-world scans.*

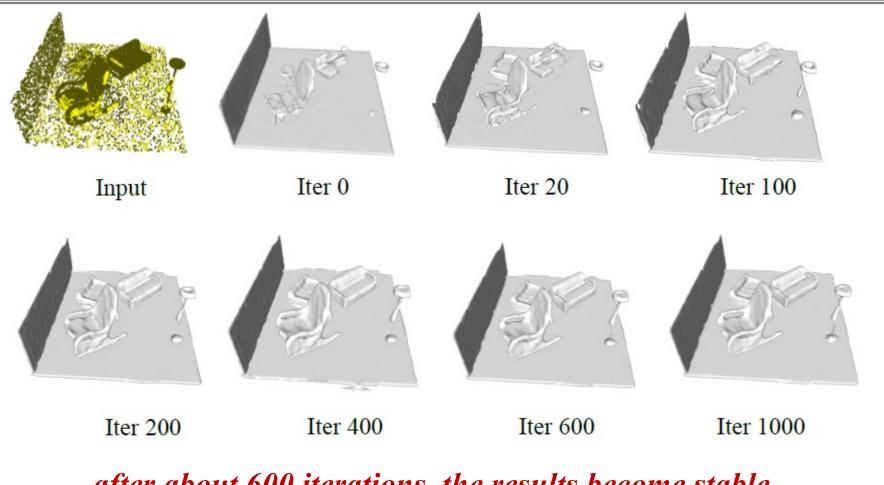
Ablation Studies

Effect of network pre-training

• Without pre-trained shape priors : fail to reconstruct reasonable geometries



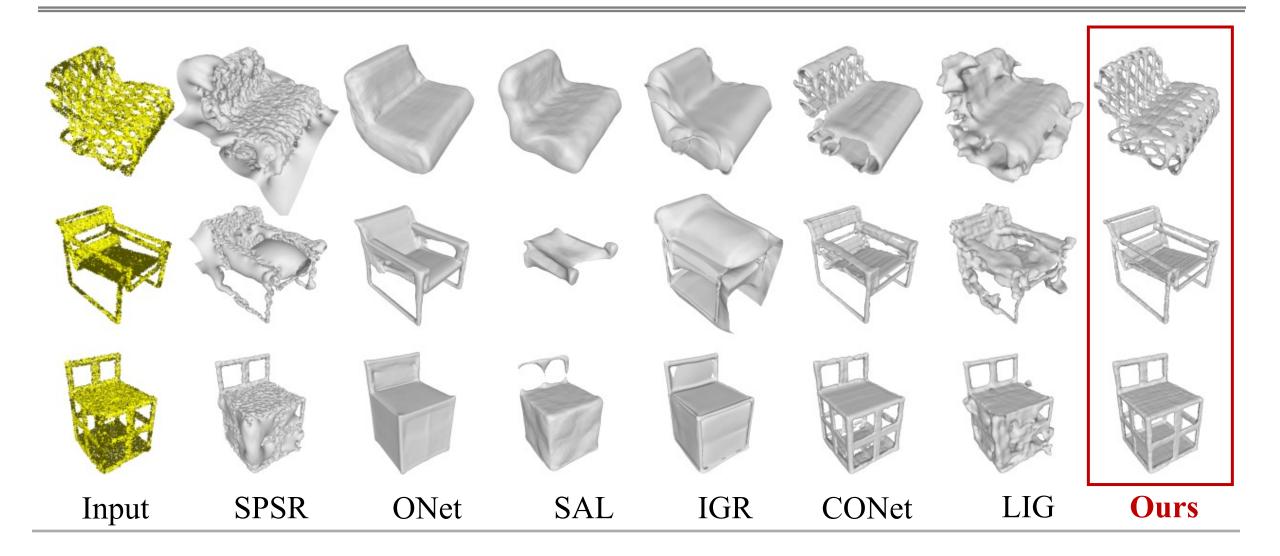
Sensitivity to the iteration number of test-time optimization



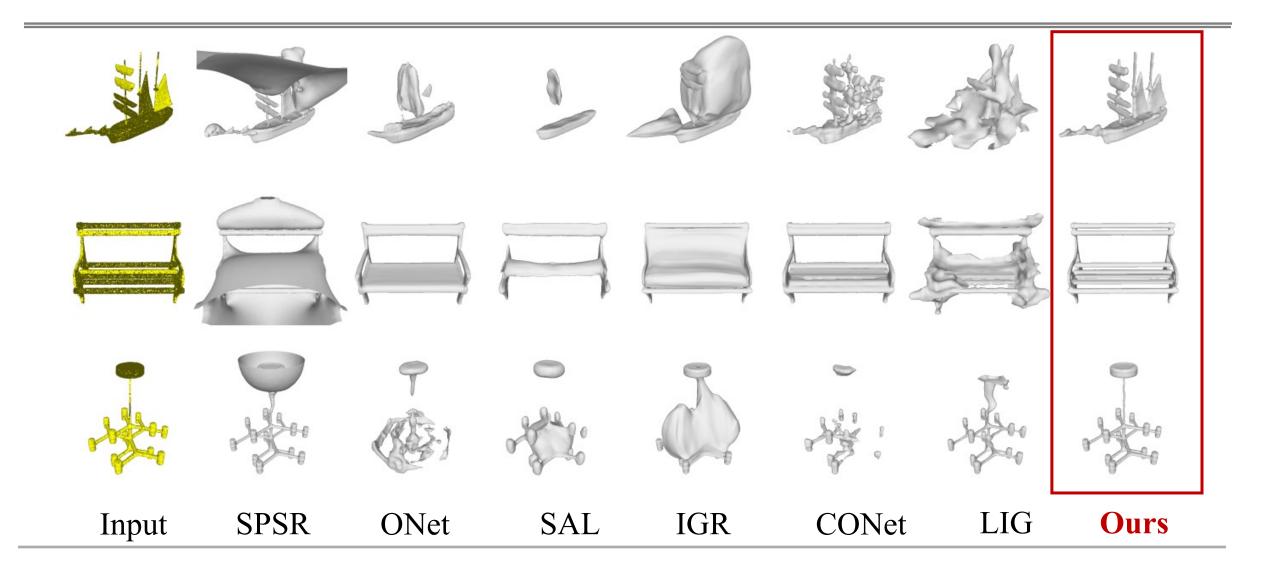
after about 600 iterations, the results become stable.

Object-level Reconstruction

ShapeNet-chair

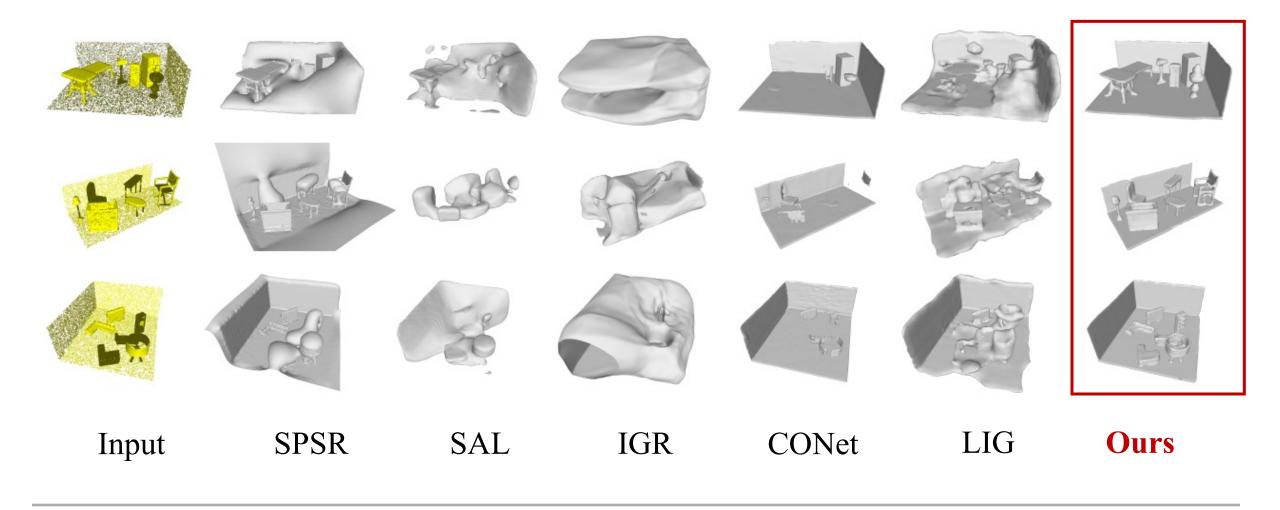


Novel categories generalization



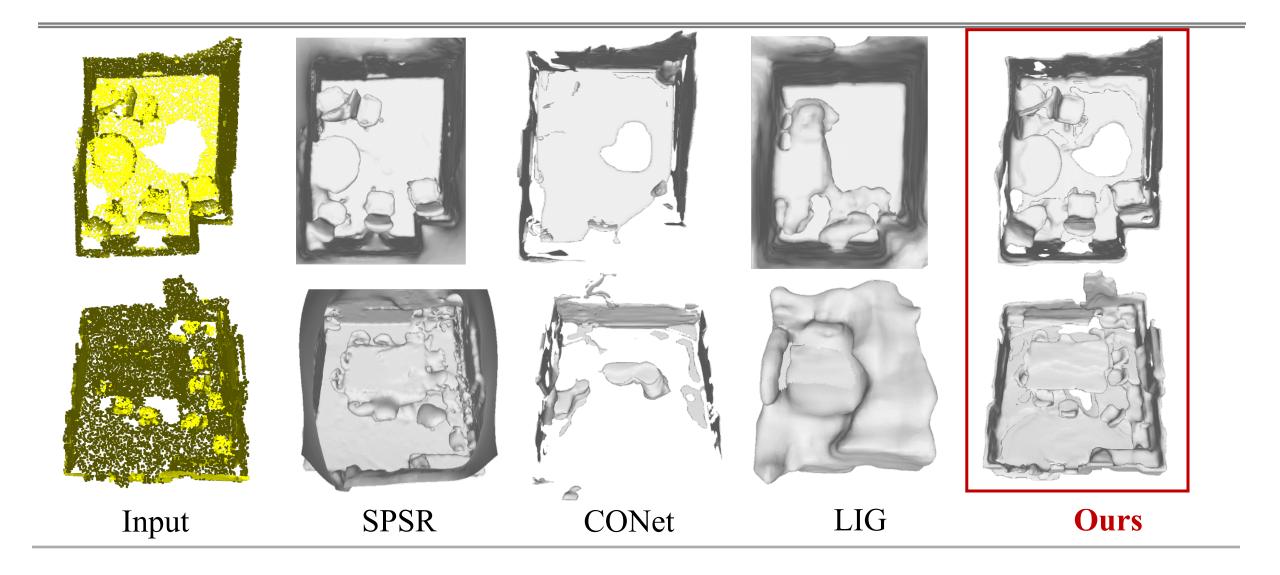
Scene-level Reconstruction

Synthetic indoor rooms

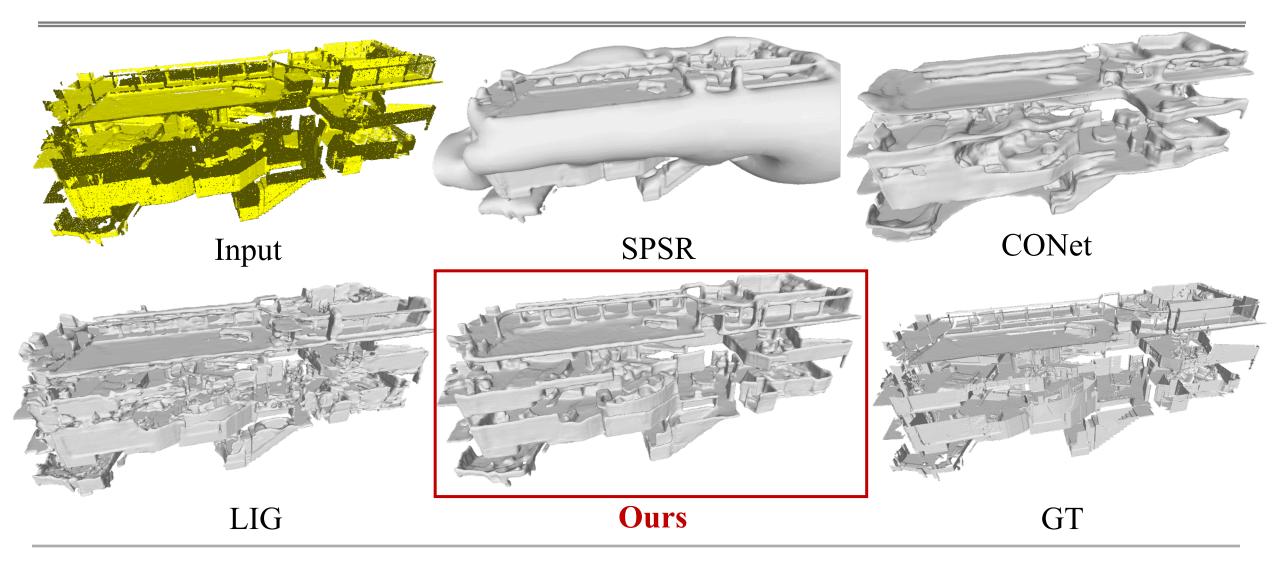


Real-world Scenes

ScanNet



Matterport3D



THANK YOU!

The code is available at

https://github.com/tangjiapeng/SA-ConvNet

