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Task: Surface Reconstruction
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Related Works
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e represent a 3D shape as the continuous decision boundary of a binary classifier.

—

O surface reconstruction with infinite resolution and arbitrary topology
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Mescheder, L., et al. Occupancy networks. CVPR 2019.



Improve the generality to novel shapes
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single forward pass test-time optimization

O Further optimize network parameters during inference to find a better solution

Park, J., et al. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. CVPR2019.



Improve the scalability to large-scale scenes
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O Pros: local shape modeling for 3D scenes

O Cons: require accurate oriented normals to enforce global consistency

Jiang, C., et al. Local implicit grid representations for 3d scenes. CVPR2020.



Improve the robustness to real-world scans
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learn SDF by unsigned distance loss

e

N

initialize the SDF decoder to

represent a signed field

O Pros: not require oriented normals

O Cons: struggle to recover fine-grained scene surfaces

Atzmon, M., et al. Sal: Sign agnostic learning of shapes from raw data. CVPR2020.
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Approach



Sign-Agnostic Optimization of Convolutional Occupancy Networks
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e Middle: local implicit fields conditioned on convolutional features from a 3D U-Net.
e Top: network pre-training on 3D datasets by binary cross-entropy (BCE) loss.
e Bottom: sign-agnostic, test-time optimization via unsigned cross entropy (UCE) loss.

Peng, S., et al. Convolutional occupancy networks. ECCV 2020.



Motivations

e Characteristic 1: Pre-trained occupancy field prediction networks provide signed
fields as initialization for the test-time optimization.
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e Characteristic 2: 3D U-Net aggregates both local and global shape features

3D-UNet O local shape features: preserve scene surface details.

O global shape priors: enforce global consistency

between local fields.



Unsigned Cross Entropy
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Q¢ :apoint set obtained from the observed surface.

Q\ $ . apoint set sampled from non-surface volume.



Work Condition Summary

Without Optimization of Local geometry

Methods :
normals network parameters modeling
SPSR [26] 3¢ v v
ONet [30] v ¥ *
SAL [Z] v X X
IGR [16] v v X
CONet [53] v X v
LIG [23] X v v
Ours v v v

Our method 1s the first to maximize the three reconstruction objectives
in a unified framework: scale well to large scenes, generalize well to

novel shapes, and robust to real-world scans.
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Ablation Studies



Effect of network pre-training

* Without pre-trained shape priors : fail to reconstruct reasonable geometries

(b) w/o pretraining (c) Ours




Sensitivity to the iteration number of test-time optimization
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after about 600 iterations, the results become stable.
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Object-level Reconstruction



ShapeNet-chair
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Novel categories generalization
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Scene-level Reconstruction



Synthetic indoor rooms
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Real-world Scenes



ScanNet




Matterport3D
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The code is available at
https://github.com/tangjiapeng/SA-ConvNet
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