

Learning Parallel Dense Correspondence from Spatio-Temporal Descriptors for Efficient and Robust 4D Reconstruction

Jiapeng Tang^{1,4} Dan Xu² Kui Jia ¹ Lei Zhang^{3,4}

¹ South China University of Technology

² The Hong Kong University of Sciences and Technology

³ The Hong Kong Polytechnic University

⁴ DAMO Academy, Alibaba Group

Task: Dynamic 4D Surface Reconstruction

• Goals:

Accurate Geometry & Temporal Coherence & Dense Correspondence & Faster Inference

- Occupancy Networks for 3D recon:
 - represent 3D shape as the continuous decision boundary of a binary classifier.

Related works: Extending Deep Implicit Representation into 4D Space

integrating occupancy flow to recover shape motions

Challenges:

• 4D Point Cloud Encoder

- Ignore the aggregation of shape properties from multiple frames.
- Inefficiently capture temporal dynamics.
- Dense Correspondence Modeling
 - Low computational efficiency (duo to solving neural ordinary differential equations).
 - Non-coherent human motions (caused by the accumulated prediction errors).

Overall Pipeline

Key idea: *Parallelly establish the dense correspondence* between predicted occupancy fields at different time steps via explicitly learning continuous displacement vector fields from *robust spatio-temporal shape representations*.

Spatio-temporal Representations Learning

aggregate shape properties and explore dynamics variations

Cross-time Correspondence Modeling

- Predict spatially continuous displacement vector fields in parallel paths through a shared MLP.
- The occupancy field transformation between O_0 and O_k :

 $\mathbf{p}_k - \mathbf{p}_0 = g_{\varphi}(\mathbf{p}_0 \oplus \mathbf{z}_0 \oplus \mathbf{z}_k)$

- Bypass the expensive computation of Neural ODE.
- Support parallel surface mesh deformations during inference.

occupancy field transformation

spatio-temporal representations

4D Shape Reconstruction

	Method	IoU	Chamfer	Correspond.	-		Method	IoU	Chamfer	Correspond.
	PSGN 4D [11]	-	0.101	0.102	-		PSGN 4D [11]	-	0.148	0.121
S 1	ONet 4D [27]	77.9%	0.084	-	C 1	ONet 4D [27]	71.9%	0.114	-	
51	OFlow [32]	81.5%	0.065	0.094		51	OFlow [32]	76.9%	0.090	0.134
	Ours	84.9%	0.055	0.080			Ours	83.8%	0.059	0.090
52	PSGN 4D [11]	-	0.119	0.131			PSGN 4D [11]	-	0.155	0.140
	ONet 4D [27]	66.6%	0.140	-	\$2	ONet 4D [27]	62.8%	0.130	-	
32	OFlow [32]	72.3%	0.084	0.117		32	OFlow [32]	67.2%	0.112	0.178
	Ours	76.2%	0.071	0.098			Ours	74.8%	0.076	0.118

time-evenly sampled point cloud sequence

time-unevenly sampled point cloud sequence with large variations

higher robustness on non-uniform sequences with large variations

4D Shape Reconstruction

more robust geometries and coherent human motions

Ablation Studies

- Ours(C1): without spatio-temporal encoder.
- Ours(C2): without parallel correspondence modeling.

4D Shape Completion

Space and Time Complexity Comparison

Method	Mem. (GB)	Train (day)	Inference (s)
OFlow [32]	3.53	42	1.84
Ours	10.8	10	0.23
	E 1/2	D 1 1/)	m t ()
	Forward (s).	Backward (s).	Train (s)
OFlow [32]	Forward (s).	4.02	4.35

about 4 times faster in training and 8 times in inference

THANK YOU!

The dataset and code are available at

https://github.com/tangjiapeng/LPDC-Net

